SECURITY CLASSIFICATION OF THIS PAGE	
REPORT DOCUMENTAT	2010
1a. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS
AD-A222 552	3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release; distribution is unlimited. 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION UNIV OF SOUTHERN CALIFORNIA 6b. OFFICE SYMBO (If applicable)	
6c. ADDRESS (City, State, and ZIP Code)	7b. ADDRESS (City, State, and ZIP Code)
University Park Los Angeles, CA 90089-1661	Chemistry Division, Code 1113 800 N. Quincy St., Arlington, VA 22217-5000
8a. NAME OF FUNDING / SPONSORING ORGANIZATION (If applicable) ONR	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-89-J-1961
8c. ADDRESS (City, State, and ZIP Code)	10. SOURCE OF FUNDING NUMBERS
Chemistry Division, Code 1113 800 N. Quincy St., Arlington, VA 22217-5000	PROGRAM PROJECT TASK WORK UNIT
11. TITLE (Include Security Classification)	
(U) COMPOSITE MATERIALS WITH IMPROVED PROPER	RTIES IN COMPRESSION
12. PERSONAL AUTHOR(S) Y.T. Park, S.Q. Zhou, D. Zhao, G. Manuel, R.	
13a. TYPE OF REPORT 13b. TIME COVERED	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Interim FROM TO	May 9, 1990 24
16. SUPPLEMENTARY NOTATION Synthesis and Dimerization 2,3-Dimethyl-5-Si Organometallics, submitted (1990).	ilaspiro[4.4]nona-2,7-diene. (JG)
17. COSATI CODES 18. SUBJECT TERM	MS (Continue on reverse if necessary and identify by block number)
	on of 2,3-Dimethyl-5-silaspiro[4.4]nona-2,7-diene, adispiro]4,4,4,4]octadeca-2,7,12,16-tetraene,
Structure 1	by X-ray crystallography, ORGANOMETALLIC Compounds
1,3-butadiene. Ring opening reactions of methylphosphoramide (HMPA) have been explored methyl-5,10-disiladispiro[4,4,4,4]octadecareactions. The structure of II in space gra=7.826(3) Å, b=9.415(3) Å, c=7.421(3) Å, 496.0(3)Å ³ , and Z=1.]nona-2,7-diene (I) has been prepared by a loro-l-silacyclopent-3-ene (III) and 2,3-dimethyl-T satalyzed by alkyllithium reagents and hexared.) High yields of the dimer 2,3,12,13-tetra-2,7,12,16-tetraene (II) are formed in these roup P_1 (triclinic) with unit cell parameters: $\alpha = 94.23^{\circ}$, $\beta = 114.56(3)^{\circ}$, $\gamma = 89.34(3)^{\circ}$, V= DTIC ELECTE MAY 15 1990
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USE	
223. NAME OF RESPONSIBLE INDIVIDUAL JOANN MILIKEN	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL (202) 696–4409
OD Form 1473. JUN 86 Provious aditions	SECURITY CLASSISICATION OF THIS DAGE

90 05 15 087

APPENDIX VII

Synthesis and Dimerization 2,3-Dimethyl-5-Silaspiro[4,4]nona-2,7-diene.

Young Tae Park, Stephen Q. Zhou, Dong Zhao, Georges Manuel, Robert Bau and William P. Weber*

Donald P. and Katherine B. Loker Hydrocarbon Research Institute, Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661 USA.

Summary:

Unsymmetrical 2,3-dimethyl-5-silaspiro[4,4]nona-2,7-diene (I) has been prepared by a dissolving metal reaction between 1,1-dichloro-1-silacyclopent-3-ene (III) and 2,3-dimethyl-1,3-butadiene. Ring opening reactions of I catalyzed by alkyl-lithium reagents and hexamethylphosphoramide (HMPA) have been explored. High yields of the dimer 2,3,12,13-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2,7,12,16-tetraene (II) are formed in these reactions. The structure of II has been determined by X-ray crystallography. II crystallized in space group P_1^- (triclinic) with unit cell parameters: a = 7.826(3) A^O , b = 9.415(3) A^O , c = 7.421(3) A^O , $\alpha = 94.11(3)^O$, $\beta = 114.56(3)^O$, $\gamma = 89.34(3)^O$, $\gamma = 496.0(3)$ A^{O3} , and $\gamma = 1$

INSPECTED A

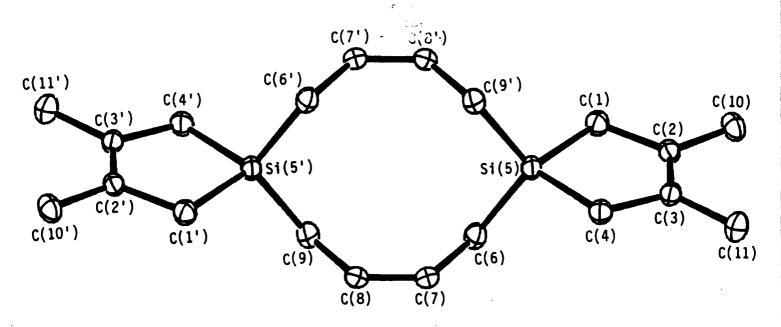
Acces	ion For		نا
NTIS	GRA&I	Ä	١
DTIC S	TAB	17	ı
	ounced		
Justi	fication	2	-
			_
By			_
	ibution	<u>/</u>	_
Avai	labilit	y Codes	
	Avail &	and/or	
Dist	Speci	lal	
1	1		
4-	N I		
		1	

While a few symmetrical 5-silaspiro[4,4]nona-2,7-dienes have been prepared, ¹⁻³ no unsymmetrically substituted examples of this ring system are known. We have prepared unsymmetrical 2,3-dimethyl-5-silaspiro[4,4]nona-2,7-diene (I) by the dissolving metal reaction of 2,3-dimethyl-1,3-butadiene with 1,1-dichlorosilacyclopent-3-ene (III) and magensium in THF and HMPA. The recently reported preparation of III from readily available starting materials makes this synthetic route feasible. ⁴

We anticipated that treatment of I with catalytic amounts of alkyllithium reagent and HMPA in THF at low temperature would result in a polymer formed by the selective ring opening of the hastituted 1-silacyclopent-3-ene ring of I. Such a polymer, poly(3,4-dimethyl-1-silacyclopent-3-en-1-ylene-cis-but-2-en-1,4-ylene), would have 1,4-(cis-but-2-ene) units bonded to the silicon atoms of the 3,4-dimethyl-1-silacyclopent-3-ene rings. This expectation was based on our previous work which has shown that while 1,1-dimethyl-1-silacyclopent-ene (IV) undergoes polymerization under these conditions to yield poly-(1,1-dimethyl-1-silacis-pent-3-ene) (V), 5 1,1,3,3-tetramethyl-1-silacyclopent-3-ene (VI) does not. 6

$$\begin{array}{c|c}
\hline
& n-BuLi \\
\hline
& THF/HMPA
\end{array}$$
(IV)

To our surprise, treatment of I under these conditions lead to almost quantitative formation of a dimer, 2,3,12,13-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2,7,12,16-tetraene (II). The central ring of II is the first example of the 1,6-disiladeca-3,8-dissa ring system of which we are aware. We believe that II is formu by anionic attack on the silyl center of I by an alkyllithium reagent to form a pentacoordinate hypervalent silicon species (VII). Ring opening of the unsubstituted ring of VII occurs to generate a cis-allyl anion which reacts with another molecule of I to form a new hypervalent siliconate intermediate (VIII). This process must occur faster than rotation about the partial carbon-carbon double bonds of the cis-allyl anion which would converted it into a trans-allyl and on. This appears reasonably since an energy barriers of approximately fifteen kcal/mol have been measured for this type of isomerization process. 7 Ring opening of the unsubstituted five membered ring of


VIII leads to a new cis-allyl anion intermediate which reacts intramolecularly with the other silicon atom of VIII faster than it reacts with another molecule of I. This process forms the central ten membered ring of II and yields a new hypervalent siliconate species (IX) which loses a molecule of alkyllithum to give II. Thus alkyllithium reagents catalyse the conversion of I to II. This is unexpected since it is dependent on the ability of an allyl anion to displace an alkyllithium from a silyl center. This is unusual since allyl anions are thermodynamically more stable than alkyl anions. 8

It was not possible to definitely assign the structure of II on the basis of NMR spectroscopy. Thus, ^{1}H , ^{13}C and ^{29}Si NMR spectra were consistent with two highly symmetrical structures: II or 7,8,16,17-tetramethyl-5,10-disiladispiro[4,4,4,4]octadeca-2.7.12.16-tetraene. The chemical shifts of the vinyl protons and carbons favor II. In particular, the ¹H NMR signals for the vinyl protons of IV are found at 5.73 ppm while those for V are found at 5.29 ppm. Similarly, the 1H NMR resonance for the vinyl protons of I comes at 5.91 ppm while those for II are found at 5.30 ppm. The ¹³C NMR signals assigned to the vinyl carbons of II are found at 130.58 and 122.92 ppm. These resonances can be compared to the vinyl carbon resonances for IV at 130.74 ppm and those for V which is found at 123.22 ppm. The ¹³C NMR signals assigned to the non-equivalent vinyl carbons of I are found at 131.16 and 130.87 ppm. Similarly, the vinyl carbon resonances of VI is found at 130.56 ppm. Finally, the 29Si resonance in I is found at 25.54 ppm while that of the dimer II is observed at 11.87 ppm. This upfield shift is similar in magnitude to that observed when one compares the ²⁹Si NMR of IV at 16.5 ppm to that of V which is found at 2.17 ppm.

The structure of the dimer was confirmed by X-ray crystal-lography. The Si-C bonds of II are between 1.872 and 1.878 A^O, while the C-C single bonds are between 1.495 and 1.516 A^O in length. The C-C double bonds are between 1.325 and 1.327 A^O. The C-Si-C bond angle in the five member silacyclopent-3-ene ring is 95.2°. For comparison this is slightly larger than the C-Si-C bond angle of 92.6° which is found in 1,1-dimethyl-2,3,4,5-tetra-

ORTEP diagram - side view of II.

ORTEP diagram - top view of II.

Experimental

X-ray Structure Analysis of II.

Crystals suitable for an x-ray structure analysis were grown by cooling a concentrated THF solution of II in a refrigerator. A crystal of dimensions $0.5 \times 0.3 \times 0.2$ mm was used for crystal and intensity data collection.

X-ray data were collected at room temperature by using a Nicolet/Syntex P2₁ diffractometer with MoK $_{\alpha}$ radiation and a maximum 20 of 50°. The orientation matrix and unit cell parameters were determined from the angular setting of 15 well-centered reflections. Three check reflections showed no significant change in intensity during the period of data collection. A total of 1809 reflections were measured.

Compound II crystallizes in space group P_1^* (triclinic) with unit cell parameters: $a=7.826(3)A^0$, $b=9.415(3)A^0$, $c=7.421(3)A^0$, $\alpha=94.11(3)^0$, $\beta=114.56(3)^0$, $\gamma=89.34(3)^0$, and $V=496.0(3)A^{03}$. Application of direct methods 11 yielded the position of the silicon atoms; the other non-hydrogen atoms were located from a series of structure-factor-calculation/difference Fourier calculations. Full matrix least squares refinement 11 (including calculated positions of hydrogen atoms) yielded a final agreement factor of 3.3% for 1478 non-zero reflections [I>30] [I]. For details of the X-ray structure and its determination see Supplemental material.

¹H, ¹³C and ²⁹Si NMR spectra were recorded on an IBM-Brucker 270-SY or Brucker AM-360 spectrometer operating in the Fourier Transform mode. ¹³C NMR spectra were run with broad band proton ecoupling. A DEPT pulse sequence was used to obtain ²⁹Si NMR spectra. This was effective since all the silicon atoms have at least one methylene group bonded to them. ¹² Identical ²⁹Si NMR spectra could be obtained by use of a heteronuclear gated decoupling pulse sequence (NONOE) with a pulse delay of 30 seconds. ¹³ Ten to fifteen percent solutions in chloroform-d were used to obtain ¹³C and ²⁹Si NMR spectra. Five percent solutions were used to obtain ¹H NMR spectra. Chloroform was utilized as an internal standard for ¹H and ¹³C NMR spectra. ²⁹Si NMR spectra were externally referenced to TMS.

IR spectra were recorded on a Perkin-Elmer PE-281 spectrometer. Spectra of oils were taken as neat films on NaCl plates. IR spectra of solids were taken on KBr pellets.

Low resolution mass spectra were obtained on a Finnigan Mat Incos 50 GCMS instrument at an ionizing voltage of 70 eV. A 0.25 mm x 30 m fused silica DB-5 capillary column was read in the gas chromatographic inlet of the mass spectrometer. High resolution mass spectra were obtained at the University of California Riverside Mass Spectrometry Facility on a VG-7070 EHF mass spectrometer at an ionizing voltage of 20 eV. Exact masses were determined by peak matching against known masses of perfluorokerosene.

Elemental analysis was performed by Galbraith Laboratories, Knoxville, TN.

Tetrahydrofuran (THF) was distilled immediately prior to use from a deep blue solution of sodium benzophenone ketyl. Hexameth-ylphosphoramide (HMPA) was distilled from calcium hydride and was stored over activated 4 A^O molecular sieves. 2,3-Dimethyl-1,3-

butadiene and active magnesium powder were purchased from Aldrich Chemical Co. Inc.

All glassware was dried overnight in an oven at 120°C. It was assembled and was flame dried under at atmosphere of purified Argon. All reactions and transfers were conducted under an atmosphere of purified Argon.

2,3-Dimethyl-5-silaspiro[4,4]nona-2,7-diene (II)

In a 500 mL three neck rb flask equipped with a reflux condenser, a pressure equalizing addition funnel and a Teflon covered magnetic stirring bar was placed magnesium powder (2.48 g, 0.1 mol), 2,3-dimethyl-1,3-butadiene (8.4 g, 0.1 mol), THF (63 mL) and HMPA (17 mL). 14 The flask and its contents were cooled to 0°C. I (10.4 g, 68 mmol) 4 and THF (20 mL) were placed in the addition funnel. This solution was added dropwise to the vigorously stirrred suspension of magnesium powder over 1 h. The reaction mixture was allowed to warm to rt and was stirred for 72 h. Pentane (100 mL) was added. Saturated aqueous ammonium shloride (100 mL) was then added dropwise with vigorous stirring. The organic layer was separated, washed with water, dried over anhydrous magnesium sulfate and filtered. The organic solvents were removed by fractional distillation through a 15 cm vacuum jacketed Vigreux column. The residue was transferred to a smaller flask and the distillation was continued under reduced pressure. A fraction, bp 108-110°C/11 mm, 4.4 g, 40% yield was obtained. It had the following properties. ¹H NMR δ : 1.45(d,4H, J = 1.0 Hz), 1.51(d,4H, J = 1.1 Hz), 1.72(t,6H, J = 1.0 Hz), 5.91(t,2H, J = 1.0 Hz)1.0 Hz). 13 C NMR δ : 16.54, 19.18, 24.13, 130.87, 131.16. 29 Si NMR δ : 25.54. IR \lor : 3020, 2970, 2890, 2880, 1605, 1440, 1395, 1205, 1175, 1090, 940, 820, 760, 725, 615 cm⁻¹. GC/MS m/e (rel. intensity): 166(3.5), 165(12.9), 164(82.4) M⁺·, 149(4.0) M⁻¹⁵⁺, 136(4.4), 123(3.2), 122(10.0), 112(3.7), 111(12.6), 110(100.0) M⁻C₄H₆+·, 97(4.0), 96(9.8), 95(83.2) M⁻C₄H₆-15+, 84(2.1), 82(25.6) M⁻C₆H₁₀+·, 71.(2.2), 70(3.7), 69(17.2), 68(8.9), 67(28.3), 66(5.8), 65(2.7), 59(1.7), 58(1.8), 57(3.5), 56(5.3), 55(34.7), 54(16.5), 53(26.8), 51(2.5), 50(1.1). High resolution MS m/e Calcd for C₁₀H₁₆Si M⁺· 164.1021; Found 164.1023. Elemental Anal. Calcd. for C₁₀H₁₆Si: C, 73.09; H, 9.82. Found: C, 72.59; H, 10.20.

Reaction of I with n-Butyllithium

I (1.5 g, 9.1 mmol), THF (40 mL) and 30 μ L of HMPA were placed in a flame dried 100 mL Schlenk flask equipped with a Teflon covered magnetic stirring bar. The flask was sealed with a rubber septum and was cooled to -78°C in a dry-ice/acetone bath. n-Butyllithium (2.5 M, 100 L, 0.25 mmol) was added slowly to the well stirred reaction mixture which became yellowish and milky. The reaction was stirred for 3 h. It was quenched by addition of 10 mL of saturated aqueous ammonium chloride while the reaction was maintained at -780C. Ether (300 mL) was added to dissolve the product. The organic layer was washed with water (3 x 50 mL), dried over anhydrous calcium chloride, filtered and the volatile organic solvents were removed by evaporation under reduced pressure. In this way, 1.45 g, 97% yield, of II was obtained. It was recrystallized from hot THF, mp 160-162 °C. It had the following spectral properties. ¹H NMR δ : 1.38(d,8H, J =0.9 Hz), 1.56(d,8H, J = 6.6 Hz), 1.69(s,12H) 5.30(d of d,4H, J = 6.8 and 0.9 Hz). ¹³C

NMR $^{\delta}$: 14.06, 19.34, 22.99, 122.92, 130.58. ²⁹Si NMR $^{\delta}$: 11.87. IR (KBr) $^{\vee}$: 2996, 2973, 2943, 2909, 2884, 2869, 2775, 1635, 1439, 1408, 1393, 1375, 1366, 1268, 1178, 1151, 1124, 1055, 1025, 986, 932, 766, 730, 694, 685, 672, 636 cm⁻¹. GC/MS m/e (rel. intensity) 330(3.9), 329(11.7), 328(40.7) M⁺·, 274(2.7), 273(6.7), 272(4.2), 246(2.5), 245(4.9), 244(2.6), 218(1.0), 166(4.0), 165(11.2), 164(62.7) $C_{10}H_{16}Si^{+}$ ·, 163(3.6), 151(1.5), 150(2.6), 149(7.2), 147(1.5), 138(3.6), 137(15.1), 136(12.0), 135(5.8), 125(1.9), 124(3.5), 123(13.5), 122(17.4), 121(7.2), 113(1.1), 112(4.9), 111(21.0), 110(100.0) $C_{6}H_{10}Si^{+}$ ·, 109(37.5), 108(11.0), 97(4.7), 96(6.1), 95(47.9), 94(3.9), 84(2.4), 83(12.7), 82(15.4), 71(3.3), 70(2.5), 69(14.2), 68(3.1), 67(10.2), 58(1.5), 57(1.3), 56(0.6), 55(12.2), 54(3.1). High resolution MS m/e calcd. for $C_{20}H_{32}Si_2$ M⁺: 328.2042. Found: 328.2036. Elemental Anal. Calcd. for $C_{20}H_{32}Si_2$: C, 73.09; H, 9.81. Found: C, 73.30; H, 9.98.

Acknowledgements:

This work was supported by the Air Force Office of Scientific Research AFOSR 89-0007 and the Office of Naval Research.

References

- 1. Manuel, G.; Bertrand, G.; Weber, W. P.; Kazoura, S. A. Organo-metallics, 1984, 3, 1340.
- Terunuma, D.; Hatta, S.; Araki, T.; Ueki, T.; Okazaki. T.;
 Suzuki, Y. Bull. Chem. Soc. Jpn. 1977, 50, 1545.
- 3. Saloman, R. G. J. Org. Chem., 1974, 39, 3602.
- 4. Damrauer, R.; Laporterie, A.; Manuel, G.; Park, Y. T.; Simon, R.; Weber, W. P. J. Organomet. Chem., in press 1990.
- 5. Zhang, X.; Zhou, Q.; Weber, W. P.; Horvath, R. F.; Chan, T.

- H.; Manuel, G. Macromolecules, 1988, 21, 1563.
- 6. Park, Y. T.; Manuel, G.; Weber, W. P. Macromolecules, 1990, 23, 1911.
- 7. Sandel, V. R.; McKinley, S. V.; Freedman, H. H. J. Am. Chem. Soc., 1967, 90, 495.
- 8. Richey, H. G. Jr. The Properties of Alkene Carbonium Ions and Carbanions. In *The Chemistry of Alkenes Vol. 2* Zabicky, J., Ed.; Interscience Publishers, London, 1970, p 67-77.
- 9. Parkanyi, L. J. Organomet. Chem., 1981, 216, 9.
- 10. Bel'skii, V. K.; Dzyabchenko, A. V. Z. Struct. Khim., 1985, 26, 94.
- 11. Sheldrick, G. M., SHELX programs for crystal structure determination, University of Cambridge, U.K. 1976.
- 12. Pegg, D. T.; Doddrell, D. M.; Bendall, M. R. J. Chem. Phys., 1982, 77, 2745.
- 13. Freeman, R.; Hill, H. D. W.; Kaptein, R. J. Magn. Reson., 1972, 7, 327.
- 14. Manuel G.; Mazerolles, P; Cauquy G. Syn. React. Inorg. Metal-Org. Chem., 1974, 4, 133.

SUPPLEMENTAL MATERIAL

Table 1: Summary of Crystal Data and Refinement Results for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene

molecular weight(g/mole)	328.20
space group	P 1 (No.2)
molecules per unit cell	1
a (Å)	7.826(3)
b (Å)	9.415(3)
c (Å)	7.421(3)
a (deg)	94.11(3)
β (deg)	114.56(3)
γ (deg)	89.34(3)
v (ų)	496.0(3)
crystal Dimensions (mm)	1.0x0.6x0.4
calculated density (g cm ⁻³)	1.10
linear abs. coeff. (cm ⁻¹)	1.42
wavelength (Å) used for data collection	0.71069
Sinθ/λ limit (Å ⁻¹)	0.5947
total number of reflections measured	1 809
number of reflections used in the structural analysis $I > 3\sigma(I)$	1478
number of variable parameters	164
final agreement factors	R(F) = 0.0331 R(wF)= 0.0331

Table 2: Final Atomic Coordinates for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene

Atom	×	Y	z
Si5	0.2718(1)	0.1925(1)	0.1046(1)
C 1	0.5295(3)	0.1823(2)	0.1654(4)
C 2	0.6007(3)	0.3338(2)	0.2349(3)
C 3	0.4776(3)	0.4342(2)	0.2257(3)
C 4	0.2721(3)	0.3908(2)	0.1493(4)
C 6	0.2106(3)	0.0975(2)	0.2840(4)
C 7	0.2255(3)	-0.0600(2)	0.2658(3)
C 8	0.0879(3)	-0.1563(2)	0.2130(3)
C 9	0.1157(3)	0.1295(3)	-0.1585(4)
C10	0.8087(4)	0.3575(3)	0.3070(5)
C11	0.5233(4)	0.5891(3)	0.2839(4)
H1A	0.5539(29)	0.1500(22)	0.0563(33)
H1B	0.5893(29)	0.1212(23)	0.2604(33)
H4A	0.2017(30)	0.4326(22)	0.0347(33)
H4B	0.2228(29)	0.4178(22)	0.2407(33)
H6A	0.2929(30)	0.1346(22)	0.4077(34)
н6В	0.0891(31)	0.1256(22)	0.2689(31)
H7	0.3457(30)	-0.0936(22)	0.2945(31)
Н8	0.1190(28)	-0.2521(23)	0.2047(31)
H9A	0.1371(28)	0.0324(24)	-0.1787(31)
H9B	0.1554(29)	0.1756(23)	-0.2340(32)
H10A	0.8506(30)	0.3342(22)	0.2050(33)
H10B	0.8795(30)	0.3018(23)	0.4060(33)
H10C	0.8473(29)	0.4569(24)	0.3444(32)
H11A	0.4672(29)	0.6450(23)	0.1794(33)
H11B	0.4812(29)	0.6236(22)	0.3830(33)
H11C	0.6522(31)	0.6095(22)	0.3408(32)

Table 3: Temperature Factors for 2,3,12,13-tetramethyl-5.10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene

Atom	U ₁₁ x10 ³	U ₂₂ x10 ³	U ₃₃ x10 ³	U ₁₂ x10 ³	U ₁₃ x10 ³	U ₂₃ x10 ³
Si5	400(3)	385(3)	581(4)	-34(2)	155(3)	35(3)
C 1	460(12)	444(12)	628(15)	40(10)	197(11)	68(11)
C 2	432(11)	524(12)	405(11)	-79(9)	157(9)	29(9)
C 3	529(12)	429(11)	401(11)	-89(9)	196(10)	18(9)
C 4	478(13)	443(13)	673(16)	19(10)	189(12)	55(11)
C 6	488(13)	511(13)	519(13)	-60(10)	162(11)	-30(10)
C 7	431(12)	510(13)	478(13)	27(10)	109(10)	107(10)
C 8	528(13)	434(12)	486(12)	11(10)	133(10)	110(10)
C 9	537(14)	550(14)	567(14)	-73(11)	232(11)	68(11)
C10	488(15)	791(20)	762(19)	-110(13)	206(13)	59(15)
C11	798(18)	469(13)	579(15)	-134(12)	322(14)	-35(11)

 $[\]begin{array}{l} \text{ is sumplete temperature factor is } \exp[-2\pi^2(U_{11}h^2a^{*2} \\ + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{12}hka^*b^* + 2U_{13}hla^*c^* + 2U_{23}klb^*c^*] \end{array}$

Table 4: Bond Distances(A)for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene

Si5C 1	1.878(2)
Si5C 4	1.872(2)
Si5C 6	1.874(2)
Si5C 9	1.877(2)
C 2C 1	1.512(3)
C 3C 2	1.327(3)
C 3C 4	1.516(3)
C 6C 7	1.487(3)
C 7C 8	1.325(3)
C 8C 9	1.495(3)
C 2C10	1.501(3)
C 3C11	1.495(3)
C 1H1A	0.937(22)
C 1H1B	0.908(22)
C 4H4A	0.914(22)
C 4H4B	0.930(22)
Ç 6H6A	0.921(22)
୍ର ଓ H6B	0.947(21)
C 7H7	0.931(21)
C 8H8	0.937(21)
C 9H9A	0.940(21)
C 9H9B	0.884(22)
C10H10A	0.953(22)
C10H10B	0.912(22)
C10H10C	0.972(21)
C11H11A	0.917(22)
C11H11B	0.959(22)
C11H11C	0.934(21)

Table 5: Bond Angles (deg) for 2,3,12,13-tetramethyl-5,10-disila[4,4,4,4]octadeca-2,7,12,16-tetraene

C 1 -Si5 -C 4	95.2(1)
C 1 -Si5 -C 9	113.9(1)
C 6 -Si5 -C 1	111.4(1)
C 6 -Si5 -C 4	112.3(1)
C 6 -Si5 -C 9	110.8(1)
C 9 -Si5 -C 4	112.4(1)
Si5 -C 1 -C 2	103.7(1)
Si5 -C 4 -C 3	103.9(1)
Si5 -C 6 -C 7	114.2(2)
C 1 -C 2 -C10	116.0(2)
C 2 -C 3 -C 4	118.2(2)
C 2 -C 3 -C11	125.6(2)
C 3 -C 2 -C 1	118.6(2)
C 3 -C 2 -C10	125.4(2)
C 4 -C 3 -C11	116.2(2)
C 6 -C 7 -C 8	127.4(2)
SI5 -C 1 -0.1A	113.1(13)
SI5 -C 1 - 1176	112.4(13)
Si5 -C 4 -H4A	111.3(13)
Si5 -C 4 -H4B	111.8(13)
Si5 -C 6 -H6A	104.9(13)
SI5 -C 6 -H6B	108.0(13)
Si5 -C 9 -H9A	108.8(13)
Si5 -C 9 -H9B	105.9(14)
C 2 -C 1 -H1A	110.8(13)
C 2 -C 1 -H1B	111.7(13)
C 2 -C10 -H10A	112.0(13)
C 2 -C10 -H10B	114.0(14)
C 2 -C10 -H10C	113.1(13)
C 3 -C 4 -H4A	110.9(13)
C 3 -C 4 -H4B	111.7(13)
C 3 -C11 -H11A	112.7(14)
C 3 -C11 -H11B	111.8(13)
C 3 -C11 -H11C	113.1(13)
C 6 -C 7 -H7	115.5(13)
C 7 -C 8 -H8	117.4(13)

H6A -C 6 -C 7	110.7(13)
H6B -C 6 -C 7	112.1(13)
H7 -C 7 -C 8	117.1(13)
H1A -C 1 -H1B	105.4(18)
H4A -C 4 -H4B	107.3(19)
H6A -C 6 -H6B	106.4(18)
H9A -C 9 -H9B	106.6(19)
H10A-C10 -H10B	103.7(19)
H10A-C10 -H10C	102.5(18)
H10B-C10 -H10C	110.5(19)
H11A-C11 -H11B	105.8(19)
H11A-C11 -H11C	108.2(19)
H11B-C11 -H11C	104.6(18)

<u>.</u> ...

.

_	ن	23	<u>ت</u>	2 5	20	1	က	4	<u>6</u>	و م	2:	- 9	2	9	5	9 9	× •	, R	2	_	23	2	<u>ლ</u>	Š	6 0 9	D :	- =		9	2	®	ლ <u>ფ</u>	<u>σ</u>	6	9	6	~	<u>.</u>	= :	- !	٠ ت	۷,	<u> </u>	,
PAGE	105			2 -							ŀ			1			•										1											Ī	•	- '	7	-	; =	
ĕ	10F0	69	86	10.0	6-	58	=	64	<u>-</u>	1 16	122	2 0	197	121	51	50	1 0 2	4	4	47	56	35	66	9	32	- 00	240	167	56	21	49	4	9 0	69	4	126	©	-13	67	121	B 0) q	157	ı
	د	-			-	_	-	-	-	_			_	-				- -		-	-	_	_	-					-	-	_		-	_	_	-	_	_	- ,	- •				
	¥	S.	i N	<u>ب</u> م	សុ	ر ای	4	4-	4	4	4	1 4	4	4	4	* *	1 4	4	4	e e	6	6-	၉	6	ტ (,	י ני) (T	ر ا	6	ر ا	ლ ი 	ر ا	7	-2	-2	-7	2	7	?	N C	4 6	7 7	
	I	-					6	7	9	n,	4 (-	0						8		9	'n	4		٧.	- c							60		9	S		en (ν.			ე 4	
	0FC	-56	- 1	- /8 5.4	53	-36	32	26	~	<u>ر ا</u>	ന (7 9) m	-23	6 9	4 1		0 0	9 1	143	37	33	54	125	9 9	O U	70.	٠ ه	ෆ	-40	137	134	20	4	-23	8	C	•	30 1	53	7 6	7 6 6 7	621	
	10F0 1	28	9 ;	5 Y	300	36	37	54	27	e .	9 (5 C	3 6	24	22	7 1	0 4 0 4	7 6	6	138	38	35	53	124 -	50	0 q	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	9	128	37	132	136	ם מ	47	23	28	33	92	. 6	24. D 0	4 4 5 6	, t	92	ı
	_	-			-	_	-	-	-	-	-	,	٠, ۰	~ ••	-					_	-	_	_	-					· –	-	_			_	_	-	-			- ,				
	¥	Ģ	Ģ	3 0	၈ တု	တ ှ	ø	60	60	6	د	, ; ;	, ,0	8	8	٠,	, ,		, ,		٠,	-	٠.		۲.	ب م	o u	ې د	φ	Ģ	φ	φ 4	φ	φ	9	9	က်	សុ	ķ,	ņ	n k	ពល	ပ် လု	,
	I	6-	~				9	က		-					ស	ا 0	n 4	,		_	0				ı0 I		0 11	1 4		~	_					9	~		s o	4 (٧-	- 0	
PIBAR	10FC	-29	-93	9 F	<u>-</u>	148	33	-93	-50	9	4 0	9	15	26	- 103	= ;	- 6-	3.5	9 4	45	31	-84	-17	29	-65	C 4	1 2 G	-35	36	-12	- 15	4 c	-61	45	13	35	148	-48	4 (77) ()) C	-23	
ark2 P	10F0	58	6	8 6	20	142	33	6	46	46	<u>.</u>	- Q	3 =	9	101	7 5	0 0	1 0	4 9 6	46	32	82	20	7.1	63	n 4	4 c	9 6	4	74	6	20	62	4	15	34	4	9	4 (67	8 C	- 4	27	
-P	_	0	0	o c	0	0	0	0	0	0	0	-	0	0	0	-	5 C	,	0	0	0	0	0	0	0	.	.	0	0	0	0	0 0	, 0	_	_	_	_							
S	×	_	~	, ,	. ~	_	7	_	7	_	•	D 0	0	•	æ (2 0 0	0 a	o a	ი თ	o o	6	6	თ	on.	o c	n (,	9 0	0	0	0		-	_	_	0	0	0	0 (> (5 C		n တု	
FOR	I	ا ا	က ()	7 0	, –	~	ო	4	ß	9	9 1	0 4	ا ا	7	0	- ‹	٧ ٣	טי	4	6-	-2	-	0	-	m •	T (ן ו	4	. 0	~	ი	- 0	, –	-0		4	(7)	-2-1	- (5.		ט ע	. T	
FACTORS	10FC	-62	6 ;	- 61 - 41	143	63	-54	49	45	-63	209	- 240	-348	27.7	-87	20°	o c	50-	-22	62	- 16	-93	68	18	9/-	D C	-112	60-	207	- 109	-35	4 4	-63	53	-35	-63	9/	20	87-	4 . 3 .	-120) Y	09	
	0F0	99	24	9 9	139	9	52	48	45	65	200	247	356	286	06	9 .	0 a	0 0	5 2 9	64	17	96	92	117	67	7 0	200	6	202	105	36	2 :	9	53	30	67	67	4 6	7		1 1 8) ((20	
7	_	0	0	0 0	, 0	0	0	0	0	0	0	-	0	0	0	5	> c	o c	0	0	0	0	0	0	0	5 6	.	, 0	0	0	0	٥ د	0	0	0	0	0	0 (5	> c	> c)	0	
STRUCTURE	¥	6	e () ო	6	၉	4	4	4	4 .	4 4	4	4	4	4 .	• •	7	1 4	10	ις.	S	ស	ഗ	ហ	n u	ט מ) IC	n n	S)	ហ	ر م	9	9	9	9	9	.	. u	0 q	ט פ) (9	
ED	r	-	~	თ ∢	6	9	~	- 1	9	Š,	ი ი	7 -	0	~	~ (n •	ŧ u	.	~	- 7	9	9-	4	ا	-2	- c	> -	- m	4	2	9	, _[. .	4	e F	-2	- 1	۰ د	- ‹	۰ د	? 4	r uc	, ~	
CALCULAF	10FC	20	0	24	. •	~	_	(7)	4	4	~ .	ი c	~	ക	S	o L	:. d	D (*	3 00	~	3	3	3	æ	n.		۷ -	ם כ	7	~	20	Ω	•	33	•	S.	ი .	- (`	-,	ر د د) 4	-213	
ONV	010	200	204	257	90	80	17	32	20	7	126		233	190	20	5 6	30.6	100	82	27	35	34	32	79	9 :	2 5	* ^	92		118	200	<u>د</u>	8	9	13	24	명 (연	7	67.	7 6) (. ~	220	
	_	0	0	00	, 0	0	0	0	0	0	0 (-	, 0	0	0	.	.	,	0	0	0	0	0	0	0	-	.			0	0	٥ د	0	0	0	0	0	0 (5 6	> c	5 C	, c	0	
ERVED	×	0	0	0 0	0	0	0	0	-	_				_						_	_	_	7	~	~ (۷,	, ,	. ~	. ~	7	7	~ ~	. ~	7	7	~	ი (ლ (,	າ ຕ) (ი ო	
988	I	-	~	m •	r w	ø	~								0		۰,	7	1	9	~								· -		- 1	~ <	מעי	9	7	∞	6 0 (φι	٥,	•	, ,	4 -	- 0	

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR SI-Park2 PIBAR

10FC	91	Ġ	96	V C	1 4 4 7	ď	132	_	ŵ	3	7	3	- 105	2	4	9	8	~	-17	8	_	9	~	-45	8	ø	Č٧	ō	_		4		N			- 1		V (٠.	- (Ň	0			-113		
10F0	9 9	26	96	3 6	0 4	82	131	21	48	E	323	4	102	25	38	70	22	7	6	79	9	29	7	42	178	67	22	109	13	34	145	54	e (27	22	2 6	•	7 6	Э (5	* ! ?	8	40	116	115	43	
_	8	7	7	N (40	۰,	7	7	~	7	8	7	7	~	~	~	7	~	~	~	~	7	7	7	7	~	~	7	7	7	7	~	~	7	~	N (٧ (٧ (٧ (٧ (> (~	7	7	~	~	7
¥	9	ø	φ.	ρ.	n K	ķ	, K	Ŋ	ķ	S.	'n	S.	5	ş	က	က	ŝ	ر ا	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4 (ا ا	ا د	ۍ د	ۍ د	? (י כי	י ני	ان د	ا س	က	က က	<u>د</u> .	ල (5
I	6	4	ស (0 0	ָר רְ	ي .	ក់	4-		-2	-	0	-	7	က	4	S	9	8-	1 -	9-	ç	4-	6-	-2	-	0	-	7	ო	4	S.	9	1 0 1	-	ָ י	<u>.</u> ا		י נ	7-	- (0	-	~	ო -	∢ 1	S.
10FC	-37	46	99	1 2 3 0	5 4		-5.1	က	40	-45	7	_	-40	. 8	~	-32	_	-95	55	37	- 14	S	-112	50	9	-67	S	47	22	9	- 104	ෆ 1	S	-	-82	4 .	9 6	იი	4 0	Э.	- •	4	-115	S	187	-31	- 113
10F0	38	6	37	4 . D .	- 4	2.4	23	38	4	43	7	0	44	91	22	30	19	95	53	39	18	48	13	6	90	64	54	47	2	9	106	136	62	104	9	7 6	2 :	ה ה ה	> .	5 :	5.7	42	13	52	184	8	501
٠	-	-				-	-	٠.		. 4	Α,	~	~	7	~	7	7	~	7	7	7	~	~	7	~	7	~	~	~	~	~	~	~	7	~ (V (V (۷ (4 (٧ (7	7	~	7	~	8	7
¥	6	O	9	2 :	2 5	2	9	_	_	_	_	~	-	_	6-	6	6	6-	6	6-	6	80	8	8	8	8	8	- 7	-1	- 1	-1	-	- 1	- 1	- '	- 1	- 1	- 9	9	9	9 (9	9	9	9	9	9
I	6	4		? .		, –	. 2	+	· 6	(7)	-	0	-	-7	ų	4-	-2	0	_	7	4	9-	7	0	7	6	4	-1	4	e-	-2	-	0	- (~ (T 1						-2		0	- (7
10FC		•	1		7 1					ł																																					
10F0	195	12	138	4		2 -	32	93	121	101	20	- 3	17	84	46	54	7	24	4	27	43	34	16	12	100	78	75	σ	24	45	32	62	26	AZ.	0 0	20 4		• •	7 6	Đ (4 (33	46	69	42	76	26
_	-	-	~	-			-	_	-	_	_	-	-	_	-	_	_	-	_	-	-	-	_	_	_	-	-	-	-	-	-	-	-	-		- •						-	_	-	-	-	_
×	ß	S	E) (I	n I	រ ព) (φ	9	9	9	9	9	9	9	9	9	9	9	9	7	7	7	7	7	7	7	7	7	7	^	7	®	5 0 (30 (2 0 (D 0	D (0 0	0 0	0 (n (3 0 (o	o	o	o	n
I	0	_	~	, CO	4 (-	9	ים י	1	G	-2	-	0	-	7	က	4	ស	9	- 7	-5	- 4	5-	-2	-	0	-	7	က	4	လ	4	-2	- (٠ د	- (۰,	? <	7 4				ا		0	- (7
10FC	1	-24	10 (9		1 4		1	-	4	-2	<u>د</u>	_	-2	- 12	8	<u> </u>	- 17	- 17	-5	4	-2	1	S	မ	7	4	~	=	ø	1	9	- 23	•	~ :	2 :	7 .	, (4 6	7		-	m ·		7	ı	
10F0	73	242	53	N (667	146	9	4	- 0	43	25	37	17	26	116	82	137	165	183	155	42	21	6	54	36	- 8	5	56	108	63	160	92	230	: 1	62.	2 0	- (2 0	מיני	67	C 4	9 ;	33	185	29	239	4
	-	_	~ (- •		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_									- •	-	-	_	_		-
×	8	8	0	7 (v c	• ^	٠,	~	. ~	8	~	က	က	က	ო	က	က	n	က	ო	က	ო	n	ო	n	4	4	4	4	4	4	4	4	4	4 4	4		* *	•	* *	7 (ត ।	ស	1 0	ស	D I	Ω
I			<u>ن</u> (- (. ~	(7)	4	. ro	7	9	- 7	S	- 4	-	-2	7	0	_	7	6	•	ស	7	8-	- 7	9-	ر. -	4-	-	-2	Ţ (-	- (۷ ۲	•	T U	O 4	9 1	- (P 1	. 5	4	ů.	7-	-
10FC		1	ŧ		1 0 0			7	- 2	7	ī	'	_		7						~	-2	'	~	7	7	~	'	7	'			'	•	- (, ,	٠,	7				7	ī		1	1	
10F0					26		- 4	122	209	188	151	11	184	18	109	22	34	-13	90	29	232	282	56	201	264	131	271	21	176	37	75	37	* 7	7	120	2 6	200		9 -	- 4		771	105	25	9.	₽ (2
4	-	_	-	-		-		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_			• •							-	_	_	~ .		-
×		1			7											1								0																					~ (
I	ĸ	^	9	- 1	9 4	4	1	- 2	1	_	7	n	•	S	9	~	80	- 7	9	ş	4	6	- 2	-	_	~	m	4	S	9	~	6	-	۰ م	•	2	• •	- (٠ ،	4 6	7	•	S (a		

PIBAR	
S1-Park2	
F Q	
FACTORS	
STRUCTURE	
D AND CALCULATED STRUCTURE FACTORS	
AND	
OBSERVED	

e 6	10FC	-132	135	36	138	- 45	- 9	3 (000	٥ ٢	9 1	8/2	5 (·	0 	- 20.	000	000	09-	4	9	-74	-36	4 (-25	-65	22	? -	911-	9	300	-67	-27	0	-34	, 6. 2. 6.	-65	146	96	7.1	42	- 149	36	15	61-	9 :	<u>6</u>	- 79
PAGE	10F0	136	132	4	134	7 1	202	2 6	a (n :	/	6/-		7 .	- :	70	- L	0	9 (4 1	73	35	30	24	65	24	20.5			5 6	99	56	=	32	9 6	63	148	96	73	4	150	33	17	21	17	8 9	8
	_	က	(1)	m (m (2 (າ (7) (, c	? c	n (7	n (· C	e (က	ი ((e (י כ	, c	(n	ო	6	က	с	9 (7)	ო	ო	ღ	က	6	က	e (co ·	ო -	ო (ო (6
	¥	9	9-	9	φ	9	9	9	9 1	٥ ı	ត	Ų.	គ	ត ម	ים ו	٠ ا	<u>ر</u> ا	<u>ر</u>	<u>ر</u>	<u>ا</u>	5	4	4	4	4	4	4	7 4	4	4	4-	4-	4	ا ا	9 (5)	ا ا	ا	ق ا	ල ල	ا ا	င	د ا	ر ا	ر ا	7	2	-3
	I	-2	7	0	- (N (m •	* 4	י מ	-	9 1	ر د	1	7	٧.	- (э.	- (~ (m	4	9	9	<u>ا</u>	4	<u>ا</u> ا	~ 1	- c	- (~ ~	က	4	φ	æ (יא פ ו	1	<u>ا</u>	-2	0	_	ო	∢ :	ស	9	6	- 7	9
	10FC	-48	5	56	98.	6 -	77	9;		4 6	- 29	-47	8 9	96	- ;	ا ا	9 (0	47	-20	- - 15	-55	59	20	8	- 29	4 .	7 - 36	9 6	6-	33	-79	65	-24	4 4	-46	47	-86	-37	4	59	-74	22	9	38	63	-121
	10F0	5	-18	28	98	22	9	7 6	9 (2 5	5 0	9	32	4 c	- :	7 ;	21	Ω !	47	20	4	21	28	2	17	28		- 6	9 6	12	34	11	64	24	5 4 C 4	. 4	46	84	39	35	29	78	28	62	30	62	123
	ب	~	~	~	~ 1	[V	Ot 4	,	٠.,٠	× 1	~	7	7	7 6	٧ (7)	m (m	m ·	က	က	က	ლ -	ტ (m	, ,	י כ) (f	, m	က	က	က	ო (7 (7	e	m	ო	က	6	m	6	O	m	m	m (က
	¥	Ø	æ	o	o	6) (o ,	۵.	:- (s n (<u> </u>	0 :	<u> </u>	2 9	2 :	2 :	9	2	9	9	0	6	و	ტ ე	g (م	ာ (ם מ	0 00	\$	8	8	8	6 0 (0 ^		1-	7-	- 1	-1	-	7	<u>,</u>	7	9	ب	မှ
	I	Ģ	4	e F	?	- '	۰.	- (> (ا ا			۰ د	- •	4	မှ	N	_		_	4		~	_ ,) (C		8	_			•	. LC	4		_						សុ		
16AR	10FC	7	46 -	- 6-	4	-26	-62	: 8	•	-116	-	_	-131		78	85°	- :	201	22	8	4	-130	89	72	- 106	-125	52	97	- E	8	-77	45	- 14	9 6) ()	-24	- 10	43	5 6	- 16	-23	22	62	-76	36	97-	5
Park2 P	10F0	143	33	32	42	26	19 c	2 6	9	112	102	94	-3	900	3 6	3 ·	12	20	54	85	2	137	78	7	<u> </u>	122	22	7 .	5	8	74	42	5	4 6	10	22	12	4	25	5	24	25	9 1	75	96	97	35
4	د	~	7	~	~	~	~ (7	~ (~	7	~	7	~ (٧ (7	N 1	N	~	Ν.	~	7	~	~	~	~	7 (4 6	۰ ۸	~	8	7	~	~ (۰ ۵	7	7	7	7	7	7	~ 1	~	7	~	7	7
S	¥	•	4	•	1 0	<u>ا</u> م	1 0	n 1	o i	A	n	n a	n ı	ស ម	חו	Ω (o 0	0	6	9	9	9	9	9	9	ا ک	1 0 (1	0 (> -	. ~	7	7	7	٠,	, ~	_	7	7	80	6 0	®	œ (20 (80 (a	3 0 (x
FOR	I	4	IO.				φ.						-	~ 0	.	4	ا م <u>ا</u>	-	9	i,	4-	e,	-2	-	0	-	~ 6) d	9	က် လ	4	e-	-2	<u>-</u> (-	m	4					<u>ر</u> د			- (.D •	4
FACTORS	10FC	152	6	- 155	235	9-	-147	2 :	€ ;	ا ا ا	53	-33	7	971-	*71	4	-35	-4/	213	121	-75	-121	-10	56	-33	-36	77	, c	98	28	104	34	201	-23	3.5	13	-45	20	-30	-77	7	-125	-73	375	-97	4 6	OR-
'URE F	10F0	155	=	160	242	63	146		4 (20	9	32	80	900	7 (76	36	9	219	150	9,	123	12	52	32	36	23	0 4	8	22	108	37	201	5 2	0 E	12	46	22	59	16	70	125	9/	372	102	9	2
Ş	پ	~	7	~	~	~	~ (Y (~ (7	7	~	7	7	٧ (7	7	7	7	7	~	7	~	~	~	7	,	4 (. ~	۰ ۲	7	7	~	~ (4 ~	~	7	7	7	7	7	~	N (7	~ (7	2
STR	×	-	-	-	-	_			- (7	~	7	7	7 (y (7	N (7	7	7	~	7	~	7	~			3 (, e	(C)	က	6	m ·	m (n (1)	က	ო	4	4	4	4	4	₹ '	4	4	4 4	4
LATED	I	-2	7	0	~	m ·	₹ 1	n	0	1 0 '	-	9	S.	•	7 C	7-	- (-	- 1	7	m	4	ភ ប	1	~ (3 0 '	- u	ט פ ו	1	G	-3	7	_	~ 0	3 4	ß	9	- 7	9	ري ا	1	~	- (0	- - (N (כי
CALCULATED	10FC	30	S	-30	63	E (9	961-	30 (ا	<u> </u>	~	~	9		9	0	42	₽ (N	-121	0	Ξ	~	9	997	4 4	90	66-	4	28	28	-51	69	3 2	3	12	291	1	-85	A .	28	71-	5	9	S S	D
OBSERVED AND	10F0	29	24	35	67	-	8	B (96	27	- T	130	5 8	9 2	78	9	4	₹ ;	69	N	9 .	0	2	56	တာ၊	9/-	7 0	9 6	ט כ	4	9	23	20	72	32	141	11	288	79	80	T	200	5.0	96	67))	2
IVED	_	~	~	~	~	~	~ (7	~	~	~	~	~	~ (~ (7	~ (~	~	~	~	~	~	7	~	~	7 (4 0	٠,	۰ ~	~	7	~	~ (۰ ۲	~	~	7	· 7	~	7	~	N (2	~ (7 (
ISEA	×	ŗ	ņ	7	7	?	?	~ (2	-2	-2	?	?	? ?	7	7-	7	;	7	7	-	-	-	7	-	- ·	7			7	٥	0	0	0 0	0	0	0	0	0	0	0	o ·					-
8	I	•	^	Ţ	~	©	ų,	7	9	?	7	0	~	m •	• (o ·	1	.	-	Ģ	'n	Ţ	Ç	7	0	- 1	7 (7	r sc	~	8		9	5	۲ (۲	?	-	n	₹ 1	ស	1	~ 1	- (، م	9	•	ا ا

H K L 10F0 10FC

K L 10FO 10FC

PAGE 4

I

H K L 10F0 10FC

K L 10F0 10FC I H K L 10F0 10FC

36	86	~	-77	20	36	-11	4	29	-77	52	15	-28	82	-55	-49	72	7	-74	-49	33	20	4	-11	-107	162	-41	28	230	-52	-119	43	-47	70	2 6	120	S	-84	195	441	28	Ø		11	_	-28	126
35	66	9	19	=	36	75	37	26	11	47	15	24	90	20	51	72	68	74	45	59	24	-3	74	109	165	40	59	228	49	911	4	20	22	- 001	120	o	11	204	439	22	59	96	90	9	31	122
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	3	4	4	2	2	2	2 4	2	2 4	4	4	4	2	4	4	4 .	; <	4	4	4	4	4	4	4	4	4	4	4	4
- 4-	9	- -5	4-	۲ ۳-	-2 -	7	ì	7	آ ھ	4	9	i S) ()	7	-	ı	١	1	ı	١			9	5	4	ا	7	•	'	١	4	ا د	1 60 7	٠ ،	יא א	4	ا ا	-2-	7	0	-	7	က က	4	S S	-1
40	5	-53	-27	-20	30	75	-50	58	- 18	-52	18	27	- 16	47	-38	-84	6 8	- 16	=	42	-36	- 19	43	99-	116	-45	-34	- 70	103	-59	-64	54	88	101	63	36	19-	-92	103	-52	154	30	96	33	-43	-41
40	9	2	7	_	33	9	7	9	9	4	6	.	D.	е	6	6	6	<u>ო</u>	7	0	4	7	_	6	o o	4	9	4	_	S	e	ıo i	8 6			L	60	_	ιΩ	0	- 1	4	סו	8		42
4	•	2				4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	₹ 1	; <	4	4	4	4	4	4	4	4	4	4	4	4
_	2	-	دې	es i	Ø	6	6	6-	80	9	8	9	6	8	8	- 7	-	- 1	-7					9			9-	9-			9		9 (9 4	ព	က်		S		န			-5			4
					<u>د</u> ا			0			ę				8	'n	4	-2	7	0	-	7	က	9	5	4-	6-	-2	7	0	-	~	m 1	\$ F	9	, K	4	6	-2	-	0	-	7	က	4	60
-12	2	- 16	138	101	163	-71	104	4	81	-43	-51	-10	33	38	115	29	34	20	156	60	67	-33	33	-39	39	9/	.102	-63	=	20	=	24	-28	2 4	6	-26	- 20	-21	62	-57	52	-13	-32	-44	34	52
7	5	17	Q	97		70	- 50	47	16	7	20	12	33	43	13	27	32	69	54	Ø	64	36	3	-	40	78	00	64	12	48	<u>ء</u>	24	27	2 0	2 2	50	22	23	99	29	54	5	33	48	9 T	22
_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	m	_	_	_	e	_	_	_	_	_	_	.	m .		. ~	_	_	_	_	_	_	_	_	_	_	_
1 5	, LO	100	TO.	S.	N.		'n	r.	O	S.	N.	9	9	9		9	9	9	 9	9	9	9	_	_	~	_	~	_	_		_	œ (, . D a		60	60	о О	о О	on on	 o	 o	Ф	0	0	··
4	ب ا	1	6	-2	7	0	-	7	က	4	ß		9						0	-	7	4	9	4	٠,	-2	7	0	-	7	6	9	ကို (2 -	. ,	~	က		4-		0	-		-3		0
01.	-67	- 133	79	4	-46	42	64	-34	-26	23	125	-123	-58	120	- 19	-81	91	58	- 18	30	52	- 106	11	-24	-71	177	72	-33	-124	7.1	-12	6° -	42	7 G	9 60	61	-52	63	148	-34	-71	96	-25	-56	24	- 29
106	7.1	53	78	45	46	45	63	4	19	25	121	128	59	119	22	83	19	29	20	30	20	108	75	19	68	179	70	35	121	72	<u>.</u>	39	46	9	9	57	5	64	147	33	29	101	31	27	27	27
e	(7)	m	က	က	6	က	က	က	n	က	n	က	က	က	ო	ო	ო	ന	ო	က	ო	က	က	ო	က	က	ო	ო	က	ო	က	ტ (m (י נ	6	က	က	(1)	ო	က	က	ო	က	m	()	က
-	_	-	-	_	8	~	~	~	7	~	8	~	7	8	7	~	~	7	က	က	ო	က	က	(1)	(1)	က	ო	ო	ო	ო	က	က	4 .	7	4	4	4	4	4	4	4	4	4	4	េ	ស
7	n	*	ß	9	8	-1	9-	ا ا	-	၉	-7	7	0	-	7	n	4	ι.	8-	-1	9-	ဇှ	<u>.</u>	-2	7	0	-	7	က	4	S	φ.	Q	. 4	, i	4	-2	7	0	-	7	က	4	ស	œ	-7
- 145	113	1 76	ഗ	₹	289	0	8	-78	24	27	- 39	79	22	•	-84	S.	_	0	φ	_	0	139	34	-45	53	8	178	32	2	~	2	4	-63	,	- 44	49	28	~	_	150	4	0	- 19	S	9	7.4
147	112	180	20	10	290	_	•	7	22	28	4	83	-	146	æ	249	_	213	6 7	9	0	135	3	4	53	68	173	37	0	7	104	9	9 6		42	48	29	32	=	147	47	96	9	262	Ö	82
													(1)	က	ო	က	ო	ო	ო	က	m	က											m (60	ო (e (m
ا د	1	. 62	7	, -	0 -2	4	1	١	١	,	ı			9	S	4	m	~					ı	1	8		S	4	6	7	_		- 6					8	7	S	4	e 6		-	- ·	-

	¥	0000
	I	
	10FC	-52 32 -45 -108
	H K L 10F0 10FC	48 30 110
	ند	សសសស
	¥	4444
	I	-4 -4 5 48 -3 -4 5 30 -2 -4 5 44 -1 -4 5 110
1BAR	10FC	29 -29 49 46 40 -39 22 16
FOR SI-Park2 PIBAR	H K L 10F0 10FC	29 49 22
4	_	4444
S	¥	© O O O
FOR	I	24-1- 80 0 0 0 4 4 4 4
ORS	J.	-20 54 15 -82
ACT	0	
URE FACT	10F0 10	20 56 16 82
UCTURE FACT	L 10FO 10	20 56 16 82
STRUCTURE FACT	K L 10F0 10	20 56 16 82
ATED STRUCTURE FACT	H K L 10F0 10FC	
CALCULATED STRUCTURE FACT		5 3 4 20 -8 4 4 56 -7 4 4 16 -6 4 4 82
) AND CALCULATED STRUCTURE FACT		5 3 4 20 -8 4 4 56 -7 4 4 16 -6 4 4 82
VED AND CALCULATED STRUCTURE FACT		5 3 4 20 -8 4 4 56 -7 4 4 16 -6 4 4 82
OBSERVED AND CALCULATED STRUCTURE FACTORS	H K L 10F0 10FC H K L 10F0 10	20 56 16 82

88	40	17	36	43	7.1	16	27	4	67	30	47	-5	23	27	2	53	29	11	57	92	39	42	37	41	51	4	63	00	18	29	92	87	4	24	44	12	94	26	96	65	73	24	4
7	ထ	ا 20	- 1	i	~	ī	ı G			1			1			1			١	'					ı			1												9- 0			
7	ดั	=	'n	4	~	Ō	5	Ξ	7	2	4	_	5	Ä	_	ß	2	,	ល	6	4	4	36	4	ຜິ	Ξ	æ	ō	Ξ	ö	ø	ā	Ξ	7	4	Ξ	ě	56	6	9	7	2	4
S	S	S	വ	ß	S	ស	ß	ស	ຜ	വ	ហ	ß	ß	വ	S	ស	ស	ល	ß	വ	ß	လ	ഗ	S	വ	ស	ഗ	വ	ഗ	လ	ഗ	ഗ	ഗ	വ	മ	S	ഗ	വ	S	ß	ß	ស	ស
0	0	0	0	_	_	-	_	_	_	_	_	_	_	_	7	7	7	7	7	7	7	7	က	က	e	က	6	က	က	n	n	က	က	4	4	4	4	4	4	4	4	4	4
•	~	m	4	8	9	<u>۔</u>	-	£.	-2	0	-	7	6	4	9-	န	4	٠,	-2	-	0	4	-				4	-2		_	7	ო	4	8	-7	9-	-5	4-	٦.	-2	7	0	-
5	47	28	-30	23	5	72	21	-54	16	-27	-104	38	22	-38	32	15	20	39	=	- 4			-64				-73	9	17	12	- 70	-36	108	99-	-41	73	171	-42	-101	54	21	99-	-60
5 6	4	5 6	28	5 8	12	72	21	55	- 3	23	66	32	22	7	38	20	7	38	12	6	4	45	68	144	7	67	67	29	17	12	67	32	105	63	45	70	174	44	96	58	22	7.1	9
ĸ	ស	'n	ស	ß	ß	ß	Ŋ	ß	ស	ß	ស	ß	ស	ស	ស	ß	ß	S	ß	S	S	ß	ស	Ŋ	ß	ស	ស	ß	ស	ĸ	ស	ស	വ	ល	S	ស	S	S	ß	S	ស	ស	ß
1	4	4-	4	4	E)	<u>.</u>	ိ	6	5	.3	e,	ç	6	<u>ا</u>	ç	<u>ا</u>	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	ī	-	7	ī	-	1	7	ī	ī	7	-	ī	-	0
0	_	~	n	4	8	-7	9-	1	4	-2	7	0	-	7	က	4	80	-7	9	-5	- 4	-3	-2	-	0	_	7	e	4	8-	-7	9-	5	-4	٦.	-2	7	0	_	8	6	4	1
9	9	23	17	-63	10	-23	-63	69	-31	5 8	-68	=	70	5 8	-49	43	45	-33	-17	-31	-64	72	-20	36	26	-49	51	-31	- 19	19	-23	-43	- 16	24	-55	-59	55	62	-41	- 10	5 6	29	- 18
0	e	25	5	65	16	22	20	70	46	26	99	12	73	52	20	4	48	32	4	34	67	74	22	36	30	48	48	32	17	75	23	48	18	28	52	26	52	29	43	15	23	63	18
•	Ŋ	Ŋ	S	Ŋ	ĸ	ស	ហ	ß	R)	Ŋ	ß	S	ស	ស	ß	ស	Ŋ	S	ß	S	ស	ស	S	ស	ស	ស	ស	ß	ស	ស	က	ស	Ŋ	S	ro O	S	ស	ß	ß	r.	S.	ល	S
•	8	Ģ	6	6	6-	8	8	8	9	8	-7	-	-1	-1	-	-1	-7	-1	- 7	9-		9-	9-	9-	9-	9-	9-	'n	សុ	ç	ç	'n	'n	ទ	ស	ភ	ពុ	5	ş	4	4-	4	4-
0	4-		-2	-	0	9	ş	ا	-2	-	9		4			7	0	-	7	- 7	9-	5	-3	-2	7	0	7	8	-7	9-	ភ	4-		-2		0	-	7	က	8-	-1	9-	សុ
5	20	-26	- 79	127	- 19	9	-60	108	-60	4	-51	9	-21	-61	69	26	+ 34	00	-49	-49	-30	-95	94	23	- 26	-48	83	49	-41	5	-61	22	06-	- 19	38	-37	-30	36	42	-53	-43	27	91
12	99	23	72	127	24	=	8	0.	9	4	48	<u> </u>	-	29	69	22	35	101	53	20	56	94	92	20	26	46	84	48	43	17	9	52	6	17	39	38	33	37	42	53	44	30	13
•	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
•	₹	4	4	•	4	4	4	4	4	ß	ഗ	ß	ഹ	ស	വ	ស	ß	ß	ഗ	ഗ	9	9	ø	9	9	9	Ø	ø	ø	7	7	^	۲.	^	~	^	æ	æ	æ	®	æ	8	80
1			-2		0	-	7	m	₹	8	-7	ا ا	4	င္	-2	7	0	7	n	•	9-	4-	Ç	-2	7	0	-	7	က	9	န	-2	7	0	-	က	Š	4-	£-	-2	7	0	-
119	32	9	-73	06	- 19	-32	38	-75	20	9	45	-123	42	9	-65	-91	24	-1	55	33	-13	124	-63	99	-40	-121	3	-50	-39	78	4	30	55	- 29	-49	88	96	- 75	-147	119	-45	-35	9
118	58	22	20	06	22	30	9	73	4	30	6	116	37	26	69	9	28	6	57	36	9	124	62	65	37	112	27	52	37	83	38	58	54	58	45	82	97	82	143	121	45	30	. 47
•	4	•	4	•	•	•	•	4	•	4	4	•	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-	_	-	-	-	-	7	~	7	7	7	7	7	~	~	~	~	ო	ო	ო	က	ტ	ო	6	ო	m	6	က	m

	-								
	ر	^	~	~	~	~	^	^	^
	¥	-2	-2	7	7	7	-2	-	-
	I	9-	i S	-3 -2	-2	-	~	6 0	4
	10FC	-59	65	23	32	39	-75	12	50
	10F0	28	67	9	36	4	73	4	30
	_	9	9	9	ø	9	ø	9	ç
	¥	4	4	S	ß	ß	ស	ß	K
	I			-7					
PIBAR	10FC	36	26	-34	-64	69	69	-30	-51
Si-Park2 P	K L 10F0	35	23	33	63	7	7.1	30	49
- P.	_1	9	9	9	9	9	9	9	œ
S	¥	0	0	0	0	0	0	0	0
FOR	I			ا ا					
ACTORS	10FC	53	23	-31	30	17	5 6	-44	55
URE F	10F0	53	5 6	30	24	6	27	46	23
UCT		9	9	9	φ	ø	9	9	9
STR	X L								
ATED	I	-3 -5	-2	7	0	_	-1	ŝ	E
CALCULATED STRUCTURE FACTORS	10FC	15	17	- 29	73	-62	20	4	-33
OBSERVED AND	10F0	16	6	30	75	9	20	7	34
VED		S	S	S	വ	ស	ഗ	S	S
SER	×	4							
08	I	~							

223 233 245 253 253 253 253 253 253 253 25	10FC 10FC -16 -21 -35 43
000 000 000 000 000 000 000 000 000 00	PAG6 10F0 16 18 18 33 33 39
	ച തതതതതത
	x nnnnn
2464-0-964464-0-987-9-1-0-964-1-0-964-1-0-84	I 66.
- 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10FC 33 -24 -2 -22 -22 -15
244 P P P P P P P P P P P P P P P P P P	10F0 33 25 10 20 24 16
000000000000000000000000000000000000000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x 000000-
- 0 6 6 4 6 4 6 6 6 7 6 7 6 7 7 7 7 7 7 7 7	I 6844400
888-6-1-4-4-4-88-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-1-6-	11BAR 10FC 27 19 -74 73 37 -38
081-0204-1404-060-4-120	10F0 10F0 139 138 188 188
	
00	N X 4444
- w m L m m 4 L L L L L L L L L L L L L L L	707 1 5 5 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	ACTOR 10FC 20 38 13 13 -47 54 22 -22
221 241 252 253 254 255 255 255 255 255 255 255	URE F 10F0 21 37 13 13 17 19 19
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.UCT 888888888888888888888888888888888888
444446666666666666666666666666666666666	N
1-0-0-0-0-1-1-1-1-0-0-0-1-0-0-0-1-0	LA1ED 1 1 2 3 3 1 1 2 3 3 1 1 1 2 3 3 3 1 1 1 1
24 46 40 40 40 40 40 40 40 40 40 40 40 40 40	CALCUL 10FC 12 12 51 -41 38 -53 38
	AND 10F0 18 50 42 37 37 37 55 37 55
O O O O O O O O O O O O O O O O O O O	VED 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ក្នុ ភ 444លឃុល ខ
	# 64000 H 0